您的位置 首页 教育

解一元二次方程的方法公式法(解一元二次方程的方法有哪些)

一元二次方程的解法3种求详细步骤 一般解法1.配方法  (可解全部一元二次方程)  如:解方程:x^2+2x-…

一元二次方程的解法3种求详细步骤

一般解法
1.配方法
  (可解全部一元二次方程)
  如:解方程:x^2+2x-3=0
  解:把常数项移项得:x^2+2x=3
  等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
  因式分解得:(x+1)^2=4
  解得:x1=-3,x2=1
  用配方法解一元二次方程小口诀
  二次系数化为一
  常数要往右边移
  一次系数一半方
  两边加上最相当
2.公式法
  (可解全部一元二次方程)
  首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
  1.当Δ=b^2-4ac<0时 x无实数根(初中)
  2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
  3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
  当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
  来求得方程的根
3.因式分解法
  (可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
  如:解方程:x^2+2x+1=0
  解:利用完全平方公式因式分解得:(x+1﹚^2=0
  解得:x1=x2=-1
4.直接开平方法
  (可解部分一元二次方程)
5.代数法
  (可解全部一元二次方程)
  ax^2+bx+c=0
  同时除以a,可变为x^2+bx/a+c/a=0
  设:x=y-b/2
  方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
  再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
  y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]

解一元二次方程的方法公式法(解一元二次方程的方法有哪些)插图

一元二次方程解法

1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m。2、配方法:用配方法解方程ax^2+bx+c=0 (a≠0)先将常数c移到方程右边:ax^2+bx=-c将二次项系数化为1:x^2+b/ax=- c/a方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a (这就是求根公式)。

一元二次方程式的解法

1、开平方法;形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。2、配方法:将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解的方法。3、求根公式:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。4、因式分解:利用因式分解求出方程的解的方法。5、计算机法:在使用计算机解一元二次方程时,和人手工计算类似,大部分情况下也是根据求根公式来求解。扩展资料:一元二次方程的解(根)的意义,能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式决定。

本文来自网络,不代表小逸教育网立场,转载请注明出处:http://www.bhcwl.com/news/3651.html

发表评论

您的电子邮箱地址不会被公开。

返回顶部