等差是什么意思
1 3 5 7 9 11像这种,前面一个减后面一个的值相同的,,1-3和3-5的值相同,类似这种等差的有很多比如说2 6 10 14 18 .。。。。 1 2 3 4 5 6 7 8 9.
这种数字的规律就叫等差!!
等差是什么
等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 注意: 以上n均属于正整数。
多项式数列 等差数列是多项式数列的一种 简称:A.P (arithmetic progression)
多项式数列:
p(n)=b(0)+b(1)*n+…+b(k)*n^k
多项式数列的和可以用一个矩阵来转换。令这个转换矩阵为A,
做向量b=[b0,b1,…,bk]
令向量c=A*b',c就是和公式的向量。
和项S(n)=c(1)*n+..+c(k)*n^k+c(k+1)*n^(k+1)。
3阶多项式数列的 A=
A有专门的算法,可以用于matlab中。
function p=leeqi(r)
format rat
p=zeros(r,r);
for k=1:r,w=2:k; p(1,k)=1-sum(p(w,k));
for n=2:r-k+1,p(n,n+k-1)=(n+k-2)/n*p(n-1,n+k-2);
end
等差数列是多项式数列的一次形式b(0)+b(1)*n,在这里把多项式数列的一次形式简称为(一次数列)。
一次数列的通项公式为:p(n)=b(0)+b(1)*n;前n项和的公式为:S(n)=[n,n^2]*[1,1/2;0,1/2]*[b(0);b(1)].
等差数列的基本公式通项公式(第n项) a(n)=a(1)+(n-1)×d , 注意:
n是正整数
即 第n项=首项+(n-1)×公差
n是项数
前n项和公式
S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2
注意: n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n.
即[a1+a1+(n-1)d]* n/2=a1 n+ n (n-1)d /2.
来自http://baike.baidu.com/view/62268.htm
什么叫等差
等差中项×项数=等差数列的和
什么是等差方程
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。
通项公式推导:
a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2
Sn=[n*(a1+an)]/2
Sn=d/2*n²+(a1-d/2)*n
注:以上n均属于正整数。
等差数列公式包括:求和、通项、项数、公差……等
等列公式[1]:an=a1+(n-1)d,(n为正整数)
S1为首项,an为第n项的通项公式,d为公差。
前n项和公式为:Sn=na1+n(n-1)d/2,(n为正整数)
Sn=n(a1+an)/2 注:n为正整数
若n、m、p、q均为正整数,
若m+n=p+q时,则:存在am+an=ap+aq
若m+n=2p时,则:am+an=2ap
若A、B、C均为正整数,B为中项,B=(A+C)/2
也可推导得Sn=na1+nd(n-1)/2
第n项的值an=首项+(项数-1)×公差
an=am+(n-m)d ,若已知某一项am,可列出与d有关的式子求解an
例如 a10=a4+6d或者a3=a7-4d
意思是:
前n项的和Sn=首项×n+项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)
项数=(末项-首项)÷公差+1
末项=首项+(项数-1)×公差
当数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,前n项的和=(首尾项相加×项数)÷2
等差数列中项公式2an+1=an+an+2其中{an}是等差数列
等差数列的和=(首项+末项)×项数÷2
等差与等比的区别
1、性质
等差数列:是从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。等比数列:是从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。2、计算公式等差数列:如果一个等差数列的首项为a1,公差为d,那么该等差数列第n项的表达式为:an=a1+d(n-1)。等比数列:通项公式通过定义式叠乘而来,通项公式为:3、特点等差数列:和=(首项+末项)×项数÷2;项数=(末项-首项)÷公差+1;首项=2x和÷项数-末项或末项-公差×(项数-1);末项=2x和÷项数-首项;末项=首项+(项数-1)×公差;2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。等比数列:若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1);在等比数列中,首项A1与公比q都不为零。参考资料来源:百度百科-等差数列参考资料来源:百度百科-等比数列
什么叫差数等差?
所谓的等差。就是说从第二个数开始,后面的每一个数与前面的一个数的差是一个常数。